Pseudo almost automorphic solutions for dissipative differential equations in Banach spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution Equations in Generalized Stepanov-like Pseudo Almost Automorphic Spaces

In this article, first we introduce and study the concept of Sγ pseudo almost automorphy (or generalized Stepanov-like pseudo almost automorphy), which is more general than the notion of Stepanov-like pseudo almost automorphy due to Diagana. We next study the existence of solutions to some classes of nonautonomous differential equations of Sobolev type in Sγ -pseudo almost automorphic spaces. T...

متن کامل

Almost Automorphic and Pseudo-Almost Automorphic Solutions to Semilinear Evolution Equations with Nondense Domain

In recent years, the theory of almost automorphic functions has been developed extensively see, e.g., Bugajewski and N’guérékata 1 , Cuevas and Lizama 2 , and N’guérékata 3 and the references therein . However, literature concerning pseudo-almost automorphic functions is very new cf. 4 . It is well known that the study of composition of two functions with special properties is important and bas...

متن کامل

Existence of Weighted Pseudo Almost Automorphic Mild Solutions to Fractional Integro-differential Equations

In this paper, we study the existence of weighted pseudo almost automorphic mild solutions of integro-differential equations with fractional order 1 < α < 2, here A is a linear densely defined operator of sectorial type on a complex Banach space X. This paper also deals with existence of weighted pseudo almost automorphic mild solutions of semilinear integro-differential eqautions with A is the...

متن کامل

Weighted Pseudo Almost Automorphic Solutions to Non- autonomous Semilinear Differential Equations

We consider the existence and uniqueness of Weighted Pseudo almost automorphic solutions to the non-autonomous semilinear differential equation in a Banach space X : ( ) = ( ) ( ) ( , ( )), ' u t A t u t f t u t t R where ( ), , A t t R generates an exponentially stable evolution family { ( , )} U t s and : f X X R satisfies a Lipschitz condition with respect to the second argument. MSC 2010: 4...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2009

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2008.11.017